7 research outputs found

    Leak location based on PDS-VMD of leakage-induced vibration signal under low SNR in water-supply pipelines

    Get PDF
    Leak location in water-supply pipelines is of great significance in order to preserve water resources and reduce economic losses. Cross-correlation (CC) based leak location is a popular and effective method in water-supply pipelines (WSP). However, with a decrease of signal to noise ratio (SNR), the errors of time-delay estimation (TDE) based on CC will become larger making it almost impossible to determine a leakage position. Hence, this work proposes leak location based on a combination of phase difference spectrum and variational mode decomposition (PDS-VMD) of leakage-induced vibration signal under low SNR for WSP. Firstly, the leakage-induced vibration signal is decomposed into several intrinsic mode functions (IMFs) by VMD, where the characteristic frequency band is determined by PDS of cross spectrum of two leakage signals. Then, the energy ratio of leakage signal in characteristic frequency band serves as a guideline to select effective IMF components from the decomposed IMFs. Finally, the selective IMFs are reconstituted into a new signal which can be used to determine a leak position using CC based TDE. In order to verify the effectiveness of the proposed leak location algorithm, the method based on PDS-VMD is compared with that using CC, combination of CC coefficient and VMD (CCC-VMD) using both simulation and experiment. The simulation and experimental results demonstrate that the proposed PDS-VMD method is more suitable for leak location in WSP, which provides immunity to both broadband and narrow band noise under low SNR. © 2020 IEEE

    A comprehensive review of acoustic methods for locating underground pipelines

    Get PDF
    Underground pipelines are vital means of transporting fluid resources like water, oil and gas. The process of locating buried pipelines of interest is an essential prerequisite for pipeline maintenance and repair. Acoustic pipe localization methods, as effective trenchless detection techniques, have been implemented in locating underground utilities and shown to be very promising in plastic pipeline localization. This paper presents a comprehensive review of current acoustic methods and recent advances in the localization of buried pipelines. Investigations are conducted from multiple perspectives including the wave propagation mechanism in buried pipe systems, the principles behind each method along with advantages and limitations, representative acoustic locators in commercial markets, the condition of buried pipes, as well as selection of preferred methods for locating pipelines based on the applicability of existing localization techniques. In addition, the key features of each method are summarized and suggestions for future work are proposed. Acoustic methods for locating underground pipelines have proven to be useful and effective supplements to existing localization techniques. It has been highlighted that the ability of acoustic methods to locate non-metallic objects should be of particular practical value. While this paper focuses on a specific application associated with pipeline localization, many acoustic methods are feasible across a wide range of underground infrastructures

    A Comprehensive Review of Acoustic Methods for Locating Underground Pipelines

    No full text
    Underground pipelines are vital means of transporting fluid resources like water, oil and gas. The process of locating buried pipelines of interest is an essential prerequisite for pipeline maintenance and repair. Acoustic pipe localization methods, as effective trenchless detection techniques, have been implemented in locating underground utilities and shown to be very promising in plastic pipeline localization. This paper presents a comprehensive review of current acoustic methods and recent advances in the localization of buried pipelines. Investigations are conducted from multiple perspectives including the wave propagation mechanism in buried pipe systems, the principles behind each method along with advantages and limitations, representative acoustic locators in commercial markets, the condition of buried pipes, as well as selection of preferred methods for locating pipelines based on the applicability of existing localization techniques. In addition, the key features of each method are summarized and suggestions for future work are proposed. Acoustic methods for locating underground pipelines have proven to be useful and effective supplements to existing localization techniques. It has been highlighted that the ability of acoustic methods to locate non-metallic objects should be of particular practical value. While this paper focuses on a specific application associated with pipeline localization, many acoustic methods are feasible across a wide range of underground infrastructures
    corecore